Casing has removable Bottom access panel for servicing internal parts.

UL Listed 1" insulation conforms to UL Test 181 and NFPA 90A.

Sturdy 22 gauge galvanized steel construction.

Electronic damper controls shown. (Pneumatic available)

Plenum air filter rack. (Filter Optional)

Fan motor.

Thermally insulated inlet collar.

Tri-Averaging inlet sensor amplifies velocity pressure signals for air flow measuring and pressure independent flow control.

Fan control and damper control enclosure. (Standard)

Capacitor (Standard)

Fan contactor. (Standard)

Toggle disconnect. (Optional)

Transformer. Not shown. (Optional)

3/8" damper shaft rotates in three oil impregnated sintered bronze bearings. Slot in damper shaft to indicate damper position.

Calibration chart for flow measuring and balancing.

OPTIONAL ETL LISTING

INSIDE CONTROLS ENCLOSURE
CONSTANT VOLUME FAN TERMINALS

- From the job specification or schedule, determine the Maximum and Minimum primary CFM requirement for each zone.
- Refer to the fan curves located under the Performance Data Section of this catalog.
- Select a Fan Size from these curves, making sure that the fan selected can deliver the Maximum Primary CFM at a given downstream external static pressure [ESP]. Downstream ESP consists of ductwork, flex, coils etc.

NOTE: For proper operation, it is recommended that the downstream ESP be at least 0.20” WG.

- Units must be selected to operate within the minimum and maximum range of the fan curves. Fan speed controllers [SCR] are provided as standard to allow airflow adjustments and balancing.
- Inlet size is predetermined according to the Fan Size selected for constant volume units. See Quick Selection Table.
- After a Fan Size is selected, refer to the Primary Air Inlet Parameter chart Table. Make sure that the Minimum primary CFM is within the ranges shown for Pneumatic or Electronic controls.
- Sound Level: Refer to the sound section of this catalog to determine if the unit selected meets the required NC or Db levels specified.
- Pressure Drop: Refer to the performance section of this catalog to determine the air differential pressure [ΔPs]. ΔPs is the static pressure difference from the inlet to discharge and does not include hot water or electric coils. See coil selection for Ps of these devices.
- Heating Coils: For units that require hot water or electric heat refer to the appropriate sections of this catalog for performance data.
- Controls: See Control Section for Terminal Unit Controls and the sequence of operation as specified.

INTERMITTENT VOLUME FAN TERMINALS

- From the job specification or schedule, determine the Maximum and Minimum primary CFM requirement for each zone.
- Select a unit size within the Maximum and Minimum primary CFM range. Maximum CFM should not exceed the maximum rating shown. [Maximum rating based on approximately 3000 FPM]. Minimum CFM should be selected within the pneumatic or electronic minimum CFM ranges shown. [A minimum of 0 CFM is also acceptable if specified].
- Evaluate the fan CFM requirement for each unit and refer to the Fan Curves of this catalog. Note: Actual heating CFM = fan CFM + minimum primary CFM.
- Select a Fan Size from these curves, making sure that the fan selected can deliver the desired CFM at a given downstream external static pressure [ESP]. Downstream ESP consists of ductwork, flex, coils, etc. Note: For proper operation, it is recommended that the downstream ESP be at least 0.20” WG.
- Units must be selected to operate within the minimum and maximum range of the fan curves. Fan speed controllers [SCR] are provided as standard to allow airflow adjustments and balancing.
- After the Fan and Inlet Size is determined refer to the Quick Selection Table to make sure that your selection is available. You will notice that there are many Fan and Inlet size combinations shown for intermittent fan terminals [AS units].
- Sound Level: Refer to the sound section of this catalog to determine if the unit selected meets the required NC or dB levels specified.
- Pressure Drop: Refer to the performance section of this catalog to determine the air differential pressure [ΔPs]. ΔPs is the static pressure difference from the inlet to discharge and does not include hot water or electric coils. See coil selection for ΔPs of these devices.
- Heating Coils: For units that require hot water or electric heat refer to the appropriate sections of this catalog for performance data. Note: Actual heating CFM = fan CFM + minimum primary CFM.
- Controls: See Control Section for Terminal Unit Controls and the sequence of operation as specified.

Typical Sequence of Operation – Intermittent Volume

Central fan on – Day (occupied) operation.
When the central system fan is “on”, the intermittent fan unit operates as a standard throttling control unit for cooling loads. As the cooling load diminishes the control valve throttles to a minimum or closed position, the fan is energized by the P/E switch for pneumatic controls or an electric contactor for electronic controls to draw in warm plenum air. Thermostat is calling for heat.

Central fan off – Night (unoccupied) operation.
When the central system fan is “off”, on a call for less cooling, the primary air supply valve closes. The unit fan is then turned on and off by the P/E switch for pneumatic controls or an electric contactor for electronic controls on demands for heat and not heat respectively.

CAUTION: For electronically controlled unit, a minimum CFM value other than zero may cause the damper to drive open when the central system is off.

Typical Sequence of Operation – Constant Volume

Central fan on – Day (occupied) operation.
When the central system fan is “on” and a positive pressure of at least .10 IWC is present at the primary air inlet, the unit air flow switch senses this pressure and keeps the fan on all the time by overriding the unit P/E switch action with pneumatic controls or electric contactor with electronic controls.

Central fan off – Night (unoccupied) operation.
When the central system fan is “off” at 0.0 to negative pressure is present at the primary air inlet. The airflow switch senses the negative pressure and is taken out of the circuit. The unit fan is then turned off by the P/E switch with pneumatic controls or electric contactor with electronic controls.

CAUTION: For electronically controlled unit, a minimum CFM value other than zero may cause the damper to drive open when the central system is off.
Quick Selection Table

Intermittent and Constant Volume Fan Terminals

<table>
<thead>
<tr>
<th>Unit Type</th>
<th>Fan Size</th>
<th>Inlet Size (In.)</th>
<th>Motor HP</th>
<th>Full Load Amps 120 V</th>
<th>Full Load Amps 277 V</th>
<th>Maximum Primary Air Flow (Pneumatic)</th>
<th>Minimum Primary Air Flow (Electronic)</th>
<th>Maximum Fan CFM 0.25"wg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>1/6</td>
<td>2.0</td>
<td>1.0</td>
<td>350</td>
<td>0 or 75</td>
<td>0 or 45</td>
<td>290</td>
</tr>
<tr>
<td>A</td>
<td>6</td>
<td>1/6</td>
<td>2.0</td>
<td>1.0</td>
<td>500</td>
<td>0 or 110</td>
<td>0 or 65</td>
<td>290</td>
</tr>
<tr>
<td>A</td>
<td>7</td>
<td>1/6</td>
<td>2.0</td>
<td>1.0</td>
<td>700</td>
<td>0 or 140</td>
<td>0 or 85</td>
<td>290</td>
</tr>
<tr>
<td>B</td>
<td>6</td>
<td>1/6</td>
<td>2.0</td>
<td>1.0</td>
<td>500</td>
<td>0 or 110</td>
<td>0 or 65</td>
<td>400</td>
</tr>
<tr>
<td>B</td>
<td>7</td>
<td>1/6</td>
<td>2.0</td>
<td>1.0</td>
<td>700</td>
<td>0 or 140</td>
<td>0 or 85</td>
<td>400</td>
</tr>
<tr>
<td>B</td>
<td>8</td>
<td>1/6</td>
<td>2.0</td>
<td>1.0</td>
<td>1000</td>
<td>0 or 185</td>
<td>0 or 105</td>
<td>400</td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td>1/6</td>
<td>2.0</td>
<td>1.0</td>
<td>700</td>
<td>0 or 140</td>
<td>0 or 85</td>
<td>570</td>
</tr>
<tr>
<td>C</td>
<td>8</td>
<td>1/6</td>
<td>2.0</td>
<td>1.0</td>
<td>1000</td>
<td>0 or 185</td>
<td>0 or 105</td>
<td>570</td>
</tr>
<tr>
<td>C</td>
<td>10</td>
<td>1/6</td>
<td>2.0</td>
<td>1.0</td>
<td>1500</td>
<td>0 or 300</td>
<td>0 or 155</td>
<td>570</td>
</tr>
<tr>
<td>D</td>
<td>8</td>
<td>1/4</td>
<td>3.2</td>
<td>1.2</td>
<td>1000</td>
<td>0 or 185</td>
<td>0 or 105</td>
<td>900</td>
</tr>
<tr>
<td>D</td>
<td>10</td>
<td>1/4</td>
<td>3.2</td>
<td>1.2</td>
<td>1500</td>
<td>0 or 300</td>
<td>0 or 155</td>
<td>900</td>
</tr>
<tr>
<td>E</td>
<td>10</td>
<td>1/4</td>
<td>4.9</td>
<td>1.7</td>
<td>1500</td>
<td>0 or 300</td>
<td>0 or 155</td>
<td>1300</td>
</tr>
<tr>
<td>E</td>
<td>12</td>
<td>1/4</td>
<td>4.9</td>
<td>1.7</td>
<td>2300</td>
<td>0 or 430</td>
<td>0 or 225</td>
<td>1300</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td>1/4</td>
<td>4.9</td>
<td>1.7</td>
<td>3100</td>
<td>0 or 600</td>
<td>0 or 335</td>
<td>1300</td>
</tr>
<tr>
<td>F</td>
<td>12</td>
<td>1/2</td>
<td>8.8</td>
<td>3.6</td>
<td>2300</td>
<td>0 or 430</td>
<td>0 or 225</td>
<td>1870</td>
</tr>
<tr>
<td>F</td>
<td>14</td>
<td>1/2</td>
<td>8.8</td>
<td>3.6</td>
<td>3100</td>
<td>0 or 600</td>
<td>0 or 335</td>
<td>1870</td>
</tr>
<tr>
<td>F</td>
<td>16</td>
<td>1/2</td>
<td>8.8</td>
<td>3.6</td>
<td>4200</td>
<td>0 or 780</td>
<td>0 or 465</td>
<td>1870</td>
</tr>
</tbody>
</table>

Notes:

1. **AC Units** = Constant Volume Terminals (Series)
2. **AS Units** = Intermittent Volume Terminals (Parallel)

PRIMARY AIR INLET PARAMETERS (Pressure Independent Control)

<table>
<thead>
<tr>
<th>Inlet Diameter</th>
<th>Rated CFM</th>
<th>Pneumatic Minimum CFM Range</th>
<th>Electronic Minimum CFM Range</th>
<th>Maximum CFM Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>5"</td>
<td>350</td>
<td>ø or *75-140</td>
<td>ø or *45-140</td>
<td>210-350</td>
</tr>
<tr>
<td>6"</td>
<td>500</td>
<td>ø or *110-200</td>
<td>ø or *65-200</td>
<td>300-500</td>
</tr>
<tr>
<td>7"</td>
<td>700</td>
<td>ø or *140-280</td>
<td>ø or *85-280</td>
<td>420-700</td>
</tr>
<tr>
<td>8"</td>
<td>1000</td>
<td>ø or *185-400</td>
<td>ø or *105-400</td>
<td>600-1000</td>
</tr>
<tr>
<td>10"</td>
<td>1500</td>
<td>ø or *300-600</td>
<td>ø or *155-600</td>
<td>900-1500</td>
</tr>
<tr>
<td>12"</td>
<td>2300</td>
<td>ø or *430-920</td>
<td>ø or *225-920</td>
<td>1380-2300</td>
</tr>
<tr>
<td>14"</td>
<td>3100</td>
<td>ø or *600-1240</td>
<td>ø or *335-1240</td>
<td>1860-3100</td>
</tr>
<tr>
<td>16"</td>
<td>4200</td>
<td>ø or *780-1680</td>
<td>ø or *465-1680</td>
<td>2520-4200</td>
</tr>
</tbody>
</table>

*See Note 2.

Notes:
1. Rated CFM is based on a maximum inlet velocity of approximately 3000 FPM.
2. Minimum CFM selection below this value (except ø) with pressure independent control may provide less than optimum control characteristics. (Minimum CFM values for the ASE, ACE units will vary with a change in electric coil KW. See Electric Coil Section to calculate minimum air flow.)
3. CFM selections out of the recommended maximum or minimum ranges shown may result in less than optimum control.
4. Minimum CFM selection is recommended to be 40% of maximum rated CFM or less.
5. Maximum CFM selection is recommended to be 60% of maximum rated CFM or more.
The Carnes intermittent fan terminal unit provides constant air volume to the space for reheat applications while retaining a variable air volume system during normal cooling operation. The primary air control assembly operates independently as a standard throttling valve for cooling loads. As cooling loads diminish, the secondary air supply fan(s) is energized to induce warm ceiling plenum air. A wide variety of control sequences makes this fan powered unit compatible with the most energy efficient system design.

Features Include:

- Seventeen unit/inlet size variations offering air flow capacities to 4200 CFM primary air and 1870 CFM secondary air with low pressure drop and low sound levels.
- Durable 22 gauge galvanized steel casing construction.
- Bottom access panel for internal components.
- Flange or slip and drive discharge connections.
- Forward curved centrifugal type fan assemblies with thermally protected, Permanent Split Capacitor type 120 or 277 volt fractional horsepower motors.
- Fan/motor assemblies are isolated from the casing using rubber isolators to minimize vibration transmission.
- Adjustable SCR fan speed control.
- Field adjustable P/E switch with pneumatic controls.
- Performance data based on tests conducted in accordance with AHRI Standard 880-2008.
- Tri-Averaging type velocity sensor and calibration chart for measuring primary air flow.
- Secondary air filter rack.
- All units equipped with pneumatic or electronic pressure independent controls.
- Insulation is 1” thick, 1-1/2 lb. dual density fiberglass with surface treatment to prevent air erosion. UL listed and meets NFPA 90A requirements.
- Damper controls and fan controls are located in one enclosure.
- Low leakage primary air damper design.
- AHRI listed.
- Optional ETL listing.
- Optional secondary air sound baffle. Sound baffle is factory attached to secondary air inlet. (Contact Carnes.)
- Optional one to four row hot water coils (Model ASW). Coil is factory attached to primary air discharge.
- Optional electric reheat coils (Model ASE). Coil is factory attached to primary air discharge.
- Optional secondary air filters, Class I (re-usable) and Class II (throw away).
- Optional non-fused or fused fan disconnect switch.
- Optional foil coated insulation.
- Optional fiber-free liner.

Available Modules:

- Basic control unit — Model ASF.
- Basic control unit with hot water coil — Model ASW.
- Basic control unit with or without electric coil — Model ASE.